
72 UCLA L. Rev. Disc. 174 (2024)

U.C.L.A. Law Review			 		
When Disciplines Disagree: The Admissibility of
Computer-Generated Forensic Evidence in the Criminal
Justice System

Gregory D. Schwartz

ABSTRACT

Criminal trials increasingly rely on computer programs to generate forensic evidence. But experts
in the fi lds of computer science and forensic science often disagree over whether programs are
sufficiently trustworthy to meet the legal admissibility standards for scientific evidence. When
adjudicating between these disciplines, courts overwhelmingly side with forensic experts—even
when considering technical, software-specific concerns. Usurping the intended application
of the Daubert and Frye admissibility standards, courts blur the distinctions between scientific
disciplines. Software experts are rendered unnecessary to establish the validity of software.

This Essay argues that courts habitually overestimate the reliability of software-generated evidence,
and that courts do so because they grossly underestimate the specialized expertise involved in
software validation. Instead, courts should treat the computer science and forensic science
communities as discrete groups with distinct expertise over diffe ent aspects of forensic procedures.
This would allow courts to develop a more robust application of current admissibility standards
when considering increasingly interdisciplinary methods of generating evidence.

AUTHOR

J.D. Candidate, Stanford Law School, 2025. I am deeply grateful to Professor Lisa Larrimore
Ouellette for supervising this research. Thank you to Larissa Bersh and Matthew Bova for their
helpful comments and suggestions, and to the editors of the UCLA Law Review, Kendall Chappell,
Michael Dickerson, Samuel Dorsey, Viviana Gonzalez, Kyler McVoy, Sara Orton, Ana Siqueira,
Alyssa Stolmack, Alondra Vazquez, and Mariam Zahran, for their detailed editing work. All errors
are my own.

175

TABLE OF CONTENTS

Introduction .. 176
I. Understanding Software .. 181

A. Software Errors ... 181
1. Kinds of Errors ... 184
2. Handling Errors ... 186

B. Evaluating Software ... 188
1. Assessing Reliability... 189
2. Scientifi c Acceptance ... 192

II. Admitting Software.. 194
A. Frye Hearings .. 195
B. Daubert Hearings ... 200

III. Shortcomings of Modern Hearings ... 202
IV. Potential Solutions ... 204

A. Disclosing Source Code .. 205
B. Examining Programming Practices .. 207

1. Error-Resistant Code ... 208
2. Error-Resistant Coding ... 208

C. Emphasizing Software Expertise ... 210
Conclusion .. 211

176 72 UCLA L. REV. DISC. 174 (2024)

INTRODUCTION

A strange pattern has emerged in criminal evidentiary hearings. Across
states, legal standards, and technologies, courts regularly discount software experts
when evaluating the validity of forensic software.

In New York, for example, a defendant was on trial for murder and sought to
preclude evidence generated by a DNA matching program.1 Software experts,
including a computer science professor specialized in algorithm accountability,
testified that the program did not adhere to standard software verification
practices, such as independent verification and validation.2 The government
provided no experts with formal computer science credentials to refute this claim.3
Still, the court decided that because forensic science standards do not require
programs to follow computer science standards, the evidence was admissible.4

In Minnesota, software experts—including a computer science professor
specialized in software verification—reviewed a different DNA matching program
and identified several critical deficiencies in the software’s development and
testing.5 Again, the government offered no experts with formal computer science
credentials.6 And again, the court decided that adherence to software
development standards was unnecessary.7

1. People v. Burrus, 200 N.Y.S.3d 655 (Sup. Ct. 2023).
2. Id. at 727–28.
3. Id. at 657–98. The court deemed one of the prosecution’s experts qualified in “DNA testing as

well as probabilistic genotyping tools including software development and coding.” Id. at 688.
This expert’s undergraduate degree and PhD were in chemistry. Id. He was also one of the
creators of the DNA matching software. Id.

4. Id. at 731.
5. Special Master’s Report on the Scientific Foundations of STRmix™ at 12–13, United States v.

Lewis, 442 F. Supp. 3d 1122 (D. Minn. 2020) (No. 18-CR-194 (ADM/DTS)) (“Among the
deficiencies Prof. Heimdahl cited were: (1) lack of a ‘hazard analysis’ to identify possible failure
points in the software for special scrutiny; (2) lack of ‘formal specifications’ of what the software
is expected to do that can provide a basis for independent assessment of whether it is doing
what is expected; (3) insufficient documentation of changes in the software which interferes
with the ‘traceability’ (i.e., the effort to link performance characteristics of the software to
particular features of the code); and (4) the lack of a formal ‘code inspection’ by an independent
party to test and confirm that the software is operating according to specifications.”).

6. United States v. Lewis, 442 F. Supp. 3d 1122, 1126 (D. Minn. 2020).
7. Id. at 1131.

When Disciplines Disagree 177

In California, the prosecution relied heavily on software-generated evidence,
and the court sentenced the defendant to life without parole.8 On appeal, the court
determined that the prosecution had met their burden to show the software was
accepted by the “relevant scientific community.”9 Yet, the government had offered
no experts with formal computer science credentials.10

In Pennsylvania, a homicide defendant’s computer science experts made a
plea for the court to recognize their expertise:

We emphasize that forensic DNA and computing disciplines both
recognize and emphasize the need for validated products and systems,
but that the label of “validated” is achieved through different processes
in each discipline. We do not intend to diminish the significance or
relevance of [forensic] guidance and standards . . . but suggest that
practices common to software development and described in software
standards, guidance, articles, and texts are also relevant
considerations.11

As the criminal justice system becomes increasingly automated, this tension
between disciplines and the ramifications of this pattern are only going to grow.

Software is already employed for predictive policing,12 forensic
investigations,13 sentencing,14 and parole.15 These developments have sparked

8. See Hannah Zhao, EFF Tells California Court That Forensic Software Source Code Must Be
Disclosed to the Defendant, ELEC. FRONTIER FOUND. (May 14, 2021),
https://www.eff.org/deeplinks/2021/05/eff-tells-california-court-forensic-software-source-
code-must-be-disclosed [https://perma.cc/4BG8-VL3V].

9. People v. Davis, 290 Cal. Rptr. 3d 661, 679–80 (Ct. App. 2022).
10. Id. at 677–79.
11. Declaration of Nathaniel Adams and Jeanna Matthews at 2, United States v. Ellis, No. 19-369,

2021 WL 1600711 (W.D. Pa. Apr. 23, 2021) (emphasis omitted).
12. See, e.g., Lyria Bennett Moses & Janet Chan, Algorithmic Prediction in Policing: Assumptions,

Evaluation, and Accountability, 28 POLICING & SOC’Y 806 (2018); Jeff Asher & Rob Arthur,
Inside the Algorithm That Tries to Predict Gun Violence in Chicago, N.Y. TIMES (June 13, 2017),
https://www.nytimes.com/2017/06/13/upshot/what-an-algorithm-reveals-about-life-on-
chicagos-high-risk-list.html [https://perma.cc/K7RC-85RS].

13. See, e.g., U.S. GOV’T ACCOUNTABILITY OFF., GAO-20-479SP, FORENSIC TECHNOLOGY:
ALGORITHMS USED IN FEDERAL LAW ENFORCEMENT 5–6 (2020).

14. See, e.g., Rebecca Wexler, Code of Silence: How Private Companies Hide Flaws in the Software
That Governments Use to Decide Who Goes To Prison and Who Gets Out, WASH. MONTHLY
(June 11, 2017), https://washingtonmonthly.com/2017/06/11/code-of-silence
[https://perma.cc/NX5F-BF2H].

15. See, e.g., Rebecca Wexler, When a Computer Program Keeps You in Jail, N.Y. TIMES (June 13,
2017), https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-
criminal-justice.html [https://perma.cc/W2WF-JA52].

178 72 UCLA L. REV. DISC. 174 (2024)

critiques regarding the fairness16 and transparency17 of these systems, with
growing concern over the role of ownership and trade secrets.18 In court, software
developers often claim that their source codes are trade secrets and thus exempt
from review by criminal defendants or their attorneys.19 Such claims, and related
concerns to protect proprietary interests, encompass diverse technologies,
including image-identification programs,20 recidivism predictors,21 gunshot
detection mechanisms,22 breathalyzers,23 and DNA matching software.24

These tools interact with a justice system dominated by expert testimony,25
but automation has narrowed the scope of expert authority considerably.
Previously, experts testified about experiments that they had personally conducted
by hand, such as a forensic scientist describing their fingerprint-identification
procedure. Today, expert witnesses tend to speak to automated processes that they

16. See, e.g., Julia Angwin & Jeff Larson, Bias in Criminal Risk Scores Is Mathematically Inevitable,
Researchers Say, in ETHICS OF DATA & ANALYTICS 265 (2022) (identifying concerns over
accuracy, objectivity, errors, and bias).

17. See Wexler, supra note 14. Contra Research News: Scientific Risk Assessments May Result in
More Equitable Sentences, VANDERBILT UNIV. (Sept. 11, 2014, 12:38 PM), https://news.

 vanderbilt.edu/2014/09/11/scientific-risk-equitable-sentences/ [https://perma.cc/
 4YVR-WMUP].
18. See, e.g, Rebecca Wexler, Life, Liberty, and Trade Secrets: Intellectual Property in the Criminal

Justice System, 70 STAN. L. REV. 1343, 1429 (2018).
19. See, e.g., State v. Wakefield, 9 N.Y.S.3d 540, 543 (Sup. Ct. 2015); People v. Superior Ct.

(Chubbs), No. B258569, 2015 WL 139069, at *2 (Cal. Ct. App. Jan. 9, 2015).
20. See, e.g., Jack Gillum, Prosecutors Dropping Child Porn Charges After Software Tools Are

Questioned, PROPUBLICA (Apr. 3, 2019, 5:00 AM), https://www.propublica.org/
 article/prosecutors-dropping-child-porn-charges-after-software-tools-are-questioned

[https://perma.cc/E6FA-UEHA]; United States v. Ocasio, No. EP-11-CR-2728-KC, 2013 WL
2458617 (W.D. Tex. June 6, 2013) (discussing TLO’s, a software company, Child Protection
System); United States v. Rosenschein, CR. No. 16-4571 JCH, 2020 WL 3572662 (D.N.M. July
1, 2020) (discussing Microsoft’s PhotoDNA); United States v. Miller, 982 F.3d 412 (6th Cir.
2020) (discussing Google’s hashing algorithm for Gmail).

21. See, e.g., State v. Loomis, 881 N.W.2d 749 (Wis. 2016) (discussing Equivant’s Correctional
Offender Management Profiling for Alternative Sanctions (COMPAS) program).

22. See, e.g., Brendan Max, SoundThinking’s Black-Box Gunshot Detection Method: Untested and
Unvetted Tech Flourishes in the Criminal Justice System, 26 STAN. TECH. L. REV. 193, 240–41
(2023).

23. See, e.g., Edward J. Imwinkelried, Computer Source Code: A Source of the Growing Controversy
Over the Reliability of Automated Forensic Techniques, 66 DEPAUL L. REV. 97, 110–11 (2016).

24. See, e.g., Wakefield, 9 N.Y.S.3d at 543 (discussing Cybergenetics’s TrueAllele); United States v.
Gissantaner, 990 F.3d 457 (6th Cir. 2021) (discussing the New Zealand Crown Research
Institute’s STRmix).

25. See Peter J. Neufeld, The (Near) Irrelevance of Daubert To Criminal Justice and Some
Suggestions for Reform, 95 AM. J. PUB. HEALTH S107, S107 (2005) (“[T]here is rarely a criminal
trial that does not rely on some form of expert testimony.”).

When Disciplines Disagree 179

have merely overseen, such as testifying to the results of DNA matching software,
such as TrueAllele, without ever seeing the underlying source code.26

Despite the shrinking expertise of the witnesses conducting forensic tests,
state and federal courts rarely acknowledge the need for robustness and validity
checks on forensic software or for independent examinations by defendants.
Criminal defendants have been largely unsuccessful in seeking source code
disclosure under the Confrontation Clause,27 the Due Process Clause,28 and
admissibility standards.29

During admissibility hearings, defendants have argued that without source
code disclosure, software evidence cannot be verified to the extent required by the
legal standards for admitting scientific evidence.30 Such claims are bolstered by
scholarly arguments that source code disclosure is necessary for many programs
to find acceptance in the scientific community31—a common requirement across
admissibility standards.32

For many technologies, courts have been reluctant to accept these
arguments. Courts routinely admit breathalyzer results without source code
review, even after discovery from an outlier decision uncovered “astonishing and
highly disturbing” defects in the Alcotest 7110 MKIII-C breathalyzer.33 While the
New Jersey Supreme found that these defects made the breathalyzer

26. See Joe Palazzolo, Judge Denies Access to Source Code for DNA Software Used in Criminal Cases,
WALL ST. J. (Feb. 5, 2016, 11:03 AM), https://www.wsj.com/articles/BL-LB-53075 (reporting
comments from TrueAllele’s developer Dr. Mark Perlin that “[s]cientists test executable
software programs on real data [in validation studies]; they do not read source code text.”); see,
e.g., Commonwealth v. Foley, 38 A.3d 882 (Pa. Super. Ct. 2012) (“[S]cientists can validate the
reliability of a computerized process even if the ‘source code’ underlying that process is not
available to the public.”).

27. See, e.g., State v. Lindner, 252 P.3d 1033, 1036 (Ariz. Ct. App. 2010).
28. See, e.g., State v. Loomis, 881 N.W.2d 749, 753, 760 (Wis. 2016).
29. See, e.g., People v. Bullard-Daniel, 42 N.Y.S.3d 714, 715 (Niagara Cnty. Ct. 2016).
30. See Order at *6–9, State v. Shaw, No. CR-13-575691 (Ohio Ct. Com. Pl. Oct. 10, 2014).
31. See, e.g., BRIAN CARRIER, OPEN SOURCE DIGITAL FORENSICS TOOLS: THE LEGAL ARGUMENT 9

(2002); Darrel C. Ince, Leslie Hatton & John Graham-Cumming, The Case for Open Computer
Programs, 482 NATURE 485, 485 (2012) (“[A]nything less than release of actual source code is
an indefensible approach for any scientific results that depend on computation”); A.
Morin, J. Urban, P.D. Adams, I. Foster, A. Sali, D. Baker & P. Sliz, Shining Light Into Black
Boxes, 336 SCIENCE 159, 159 (2012) (“In the absence of source code, the inner workings of a
program cannot be examined, adapted, or modified.”).

32. See infra Part II.
33. Steven M. Bellovin et al., Seeking the Source: Criminal Defendants' Constitutional Right to

Source Code, 17 OHIO STATE TECH. L.J. 1, 11 (2021). For further description of Alcotest’s
acceptance and defects, see id. at 9–11; infra notes 49–51 and accompanying text.

180 72 UCLA L. REV. DISC. 174 (2024)

inadmissible,34 and the Supreme Court of Minnesota cited this finding when it
required the disclosure of another breathalyzer’s source code,35 evidence from
undisclosed code continues to enter courts nationwide.36 For years, courts
similarly admitted evidence without source code review from the DNA matching
program FST, until discovery uncovered errors so substantial that FST was
discontinued and its source code unsealed.37 Later, in discovery regarding FST’s
replacement, STRmix, a defendant’s review of the source code revealed an error
that had affected the program’s calculations in sixty other cases.38 Thus far, the
majority of admissibility hearings on STRmix’s primary competitor,39 TrueAllele,
have not required source code disclosure.40 A recent decision in New Jersey may
signal a shift41—after TrueAllele has been used for decades in over 850 criminal
cases.42

Using DNA-matching software as a case study, this Essay argues that courts
habitually overestimate the reliability of software-generated evidence, and that
courts do so because they inadequately appreciate the different forms of expertise
needed to validate software. In particular, closed-source software is prone to
several kinds of errors that courts do not adequately consider—omissions that
could make the evidence from these programs inadmissible under the current
standards for scientific evidence. The implications of this oversight would shift the
current trade secret debate: Where admissibility standards mandate disclosure,

34. State v. Chun, 943 A.2d 114, 153 (N.J. 2008) (finding that the breathalyzer was not “sufficiently
scientifically reliable to be admissible”).

35. State v. Underdahl, 767 N.W.2d 677, 685 (Minn. 2009) (drawing from Chun that
“integrity of the source code is essential to the scientific reliability”).

36. Stacy Cowley & Jessica Silver-Greenberg, These Machines Can Put You in Jail. Don’t
Trust Them, N.Y. TIMES (Nov. 3, 2019) https://www.nytimes.com/2019/11/03/business/

 drunk-driving-breathalyzer.html [https://perma.cc/G25M-H38W].
37. See discussion accompanying infra notes 52–55.
38. See discussion accompanying infra note 56.
39. STRmix and TrueAllele are “the two most widely used probabilistic genotyping (PG) software

systems used in the United States.” Susan A. Greenspoon, Lisa Schiermeier-Wood &
Bradford C. Jenkins, A Tale of Two PG Systems: A Comparison of the Two Most Widely Used
Continuous Probabilistic Genotyping Systems in the United States, 69 J. FORENSIC SCIS. 1840,
1841 (2024).

40. See TrueAllele® Admissibility, CYBERGENETICS, https://www.cybgen.com/information/
 admissibility/page.shtml [https://perma.cc/49J4-K97S] (listing the hearings in which

TrueAllele evidence was admitted).
41. See State v. Pickett, 246 A.3d 279, 283–84 (N.J. Super. Ct. App. Div. 2021).
42. Lauren Kirchner, Powerful DNA Software Used in Hundreds of Criminal Cases Faces New

Scrutiny, MARKUP (Mar. 9, 2021, 9:59 AM), https://themarkup.org/news/2021/03/09/
 powerful-dna-software-used-in-hundreds-of-criminal-cases-faces-new-scrutiny

[https://perma.cc/Q2SB-3AYG].

When Disciplines Disagree 181

courts do not need to evaluate developers’ trade secret claims. It would be the
developer’s choice whether they want to relinquish their claim in order to make
their product admissible.

This Essay begins in Part I by outlining the different kinds of software errors,
the difficulties in assuring software performance, and how the computer science
community has addressed these difficulties. Part II explains the requirements of
Daubert and Frye—the dominant standards for scientific admissibility in federal
and state courts. Part III covers how courts’ analysis of software reliability fails to
meet the Daubert and Frye standards. Part IV offers ways in which courts can
improve their analysis by incorporating computer science expertise.

I. UNDERSTANDING SOFTWARE

Courts tend to assume that computers are objective, accurate, and reliable.43
But software errors are common—they exist in many forms across multiple levels
of abstraction. It is challenging to verify the absence of errors, so the computer
science community has developed specialized standards and knowledge within
the field of software assurance. Additionally, many errors are specific to the
programs in which they occur, so the academic computer science community
rarely evaluates individual programs. That software assurance experts have
specialized expertise, and that computer science researchers focus on generalizable
assurance methods, undermines most courts’ approaches to evaluating software.

A. Software Errors

Software misbehavior is common, even in code developed by leading experts
for applications where reliability is critical. For instance, the hole in the ozone layer
went unnoticed for years because NASA programmers set their software to ignore
unrealistic outlier data.44 Likewise, a misplaced less-than symbol (<) in Ireland’s
National Integrated Medical Imaging System caused “potentially thousands of
patient records from MRIs, X-rays, CT scans and ultrasounds” to be recorded

43. See Eric Van Buskirk & Vincent T. Liu, Digital Evidence: Challenging the Presumption of
Reliability, 1 J. DIGIT. FORENSIC PRAC. 19, 20–21 (2006) (collecting cases).

44. See Research Satellites for Atmospheric Sciences, 1978–Present: Serendipity and Stratospheric
Ozone, NASA EARTH OBSERVATORY (Dec. 10, 2001), https://earth

 observatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
[https://perma.cc/S89U-ACT2].

182 72 UCLA L. REV. DISC. 174 (2024)

incorrectly.45 A software malfunction caused the cancer-treatment device Therac-
25 to give patients hundreds of times the intended radiation.46 Faulty code led a
large Australian bank to misreport transactions for almost three years, facilitating
widespread money laundering.47 In rare cases, software is intentionally deceptive,
as when Volkswagen programmed its vehicles to cheat on emissions tests.48

These mistakes were made by large, trusted entities handling critical and
sensitive tasks. Even for them, software assurance is challenging, and forensic
software developers face the same difficulties. Yet courts have repeatedly admitted
software-generated evidence without source code review—a fundamental
software assurance method—only for eventual analysis to uncover serious defects
in the software’s programming. In a series of cases where defendants were charged
with driving under the influence of alcohol, courts consistently maintained that
there was no need to disclose the source code of the breath-testing devices
because the defendants had “other avenues of challenge.”49 The courts noted
that defendants could access the devices’ calibration records and operator
checklists to determine whether the devices were working and properly
used.50 Yet an eventual review of the source code for New Jersey’s breath-testing
devices by a paid defense expert “uncovered a variety of defects that could impact

45. Jack Power, Software Company Behind HSE Scan Glitch Begins Investigation, IRISH TIMES (Aug.
5, 2017, 5:33 PM), https://www.irishtimes.com/news/ireland/irish-news/

 software-company-behind-hse-scan-glitch-begins-investigation-1.3178349
[https://perma.cc/MW32-R8W9]; see HEALTH SERV. EXEC., NIMIS ‘<‘ SYMBOL INCIDENT:
FINAL REPORT (2018).

46. Nancy G. Leveson & Clark S. Turner, An Investigation of the Therac-25 Accidents, 26
COMPUTER 18, 18 (1993).

47. See Allie Coyne, CBA Blames Coding Error for Alleged Money Laundering, ITNEWS (Aug. 7,
2017, 8:47 AM), https://www.itnews.com.au/news/cba-blames-coding-error-for-alleged
-money-laundering-470233 [https://perma.cc/9F4X-5Q6K].

48. See Guilbert Gates, Jack Ewing, Karl Russell & Derek Watkins, How Volkswagen’s ‘Defeat
Devices’ Worked, N.Y. TIMES (March 16, 2017), https://www.nytimes.com/

 interactive/2015/business/international/vw-diesel-emissions-scandal-explained.html
[https://perma.cc/UK9A-Q7HE]; Russell Hotten, Volkswagen: The Scandal Explained, BBC
(Dec. 10, 2015), http://www.bbc.com/news/business-34324772 [https://perma.cc/K2BY-
2E6B]; Sonari Glinton, How a Little Lab in West Virginia Caught Volkswagen’s Big Cheat,
NPR (Sept. 24, 2015, 5:04 AM), http://www.npr.org/2015/09/24/443053672/how-a-little-
lab-in-west-virginia-caught-volkswagens-big-cheat [https://perma.cc/3333-9ULP].

49. See People v. Robinson, 860 N.Y.S.2d 159, 165 (App. Div. 2008) (quoting People v. Alvarez,
515 N.E.2d 898, 900 (N.Y. 1987)).

50. Id. at 166 (“The defendant thus has not argued, and cannot argue, that he was denied the
calibration records of the Intoxilyzer Thus, the People satisfied the disclosure and
evidentiary requirements for proffering the Intoxilyzer’s measurement of the defendant's BAC
at trial.”).

When Disciplines Disagree 183

the test result.”51 The courts insufficiently estimated the risk of software defects,
and defendants paid the price.

Courts repeated this error with the Forensic Statistical Tool (FST), a
probabilistic genotyping program used to match the DNA of suspects to the DNA
found on evidence. It was developed in 2010 by New York City’s Office of the
Chief Medical Examiner (OCME). Despite OCME’s status as a public entity with
weakened proprietary interests, the courts denied independent review of FST’s
source code for years, even under a protective order. In 2016, a federal judge finally
ordered OCME to turn over FST’s source code for review by Nathaniel Adams, a
systems engineer and expert for the defense.52 In his review, Adams identified
critical issues, including a “secret function” that “tend[ed] to overestimate the
likelihood of guilt.”53 He found that the software did not use the methodology
described in sworn testimony and peer-reviewed publications.54 Following these
findings, FST was discontinued, and its entire source code was unsealed.55

Similarly, STRmix—the software chosen to replace FST in New York—was
used in 4500 cases globally before its source code was analyzed by independent
researchers and found to have programming errors that produced false results in
sixty cases.56 Such examples are not exceptional cases that will lose relevance over
time. Fundamental aspects of programming can cause errors at multiple levels of
abstraction due to various persistent mechanisms.57 These errors can remain

51. State v. Underdahl, 767 N.W.2d 677, 685 (Minn. 2009) (describing the report in State v. Chun,
943 A.2d 114, 132–33 (N.J. 2008)).

52. Order, United States v. Johnson, No. 15-CR-565 (VEC) (S.D.N.Y. June 7, 2016).
53. Stephanie J. Lacambra, Jeanna Matthews & Kit Walsh, Opening the Black Box: Defendants’

Rights to Confront Forensic Software, 5 CHAMPION 28, 32 (2018).
54. Id.
55. Lauren Kirchner, Federal Judge Unseals New York Crime Lab’s Software for Analyzing DNA

Evidence, PROPUBLICA (Oct. 20, 2017, 8:00 AM), https://www.propublica.org/article/
 federal-judge-unseals-new-york-crime-labs-software-for-analyzing-dna-evidence

[https://perma.cc/Z8BR-2ZJK].
56. David Murray, Queensland Authorities Confirm ‘Miscode’ Affects DNA Evidence in Criminal

Cases, COURIER MAIL (Mar. 20, 2015, 10:00 PM), www.couriermail.com.au/news/
 queensland/queensland-authorities-confirm-miscode-affects-dna-evidence-in-criminal-

cases/news-story/833c580d3f1c59039efd1a2ef55af92b [https://perma.cc/
 A592-NQZM] (“Queensland authorities confirmed the ‘minor miscode’ had affected DNA

likelihood ratios in 60 cases”). Granted, STRmix’s developers contest the significance of
these miscodings. Incorrect Comments Relating To STRmix in State of New Jersey v. Corey
Pickett, STRMIX (Feb. 16, 2021), https://www.strmix.com/assets/STRmix/

 STRmix-PDFs/STRmix_Response_State_of_NJ_v_Pickett_160221.pdf [https://perma.cc
 /9P49-RDZ7] (“No miscodes in STRmix have been identified by independent code review.”).
57. Infra Subpart I.A.1.

184 72 UCLA L. REV. DISC. 174 (2024)

benign in most conditions and have unpredictable effects, making them
challenging to find or guard against.58

1. Kinds of Errors

Programmers can introduce errors into forensic software at multiple levels of
abstraction. At the highest level, programmers can err if they rely on incorrect
scientific principles or misunderstand correct scientific principles. When
designing the details of their implementation, programmers can err if they
misunderstand their code, misunderstand code from other programmers, do not
foresee certain inputs, or do not foresee interactions between sections of code. At
the lowest level, programmers can err if they make typos or other simple errors.
Finally, outside of the linear development process, programmers can err if they do
not account for software updates.

Forensic software often depends on the validity of many scientific principles.
Probabilistic genotyping software (PGS), like FST and STRmix, relies on empirical
facts about the variability of human DNA to determine the likelihood that two
samples match.59 If human DNA varies less than these programs presume, PGS
would overestimate the likelihood of a DNA match. This reliance on flawed
scientific principles is the courts’ foremost focus when they evaluate forensic
software.60 But there are many other sources of error.

Forensic software developers can also err in the implementation of correct
scientific principles. This risk is heightened when software deals with technical
subject areas such as physics, chemistry, and biology, as is frequently the case with
forensic software. Unless the programmers have expertise in the relevant related
fields, they may have an incomplete understanding of the concepts they are trying
to implement and are liable to err.61

To be sure, some members of forensic software development teams often
hold advanced degrees outside of computer science.62 But programmers can still
misunderstand critical scientific principles when their coworkers possess all the

58. See infra Subpart I.A.2.
59. See Michael D. Coble & Jo-Anne Bright, Probabilistic Genotyping Software: An Overview, 38

FORENSIC SCI. INT’L: GENETICS 219 (2019) (describing the numerical thresholds used to evaluate
possible contributors).

60. See infra Part II.
61. See Christian Chessman, Note, A “Source” of Error: Computer Code, Criminal Defendants, and

the Constitution, 105 CALIF. L. REV. 179, 188 (2017).
62. See, e.g., United States v. Lewis, 442 F. Supp. 3d 1122, 1133–34 (D. Minn. 2020) (describing

STRmix co-developer John Buckleton’s scientific background).

When Disciplines Disagree 185

relevant expertise. Software projects tend to be an amalgamation of code
developed by different members of a programming team,63 and it is often
unrealistic for a resident expert to fully check a project’s code.64

Even if the underlying science is understood properly, software can still be
designed incorrectly because of imperfect foresight and misunderstandings over
critical software components. Programmers can fail to anticipate interactions
between components of a system, or between a system and its environment.65
Commercial developers no longer program with 1s and 0s or write instructions
from scratch. Instead, developers use shorthand to reference modules of code
created by strangers, team members, and themselves. The multiplication
character (*), for example, is shorthand that tells the computer to run code that was
created by somebody else. As is the shorthand to access a computer file (fopen) or
read input from a user (fgetc).66 Programmers use these generic modules to create
custom modules, which they use to make increasingly higher-level custom
modules, until they have their final product.67

As such, a modern software product is code that runs other code that runs
other code. And each reference to “other code” is an opportunity for a developer
to misunderstand or misremember the behavior of the module they are
referencing.68 For example, the programming terms “==” and “===” will perform
the same function in many cases—but not in every case.69 Misunderstanding how
a component will behave, or failing to foresee its behavior in a certain situation, can
cause the entire system to err.

63. See Thomas Chau & Frank Maurer, Knowledge Sharing in Agile Software Teams, in LOGIC
VERSUS APPROXIMATION 173, 174 (Wolfgang Lenski ed., 2004) (arguing that substantial
relevant information is inevitably lost in communication chains).

64. See infra Subpart I.B.1.
65. John Rushby, Formal Methods and Their Role in the Certification of Critical Systems, in SAFETY

AND RELIABILITY OF SOFTWARE BASED SYSTEMS 1, 2 (Roger Shaw ed., 1997).
66. Standard C Library Functions Table, by Name, IBM (May 7, 2024), https://www.ibm.com
 /docs/en/i/7.5?topic=extensions-standard-c-library-functions-table-by-name

[https://perma.cc/2FG2-K3UQ]. Note that the available shorthand differs between
programming languages.

67. The accepted best practice in programming is to make a module, or “function,” for every
distinguishable step in program. ROBERT C. MARTIN, Chapter 3: Functions, in CLEAN CODE: A
HANDBOOK OF AGILE SOFTWARE CRAFTSMANSHIP 31, 35 (2009) (“Functions should do one
thing. They should do it well. They should do it only.”). This helps keep programs organized
and understandable.

68. See Chau & Maurer, supra note 63 (arguing that substantial relevant information is inevitably
lost in communication chains).

69. See Sobit Prasad, How Is == Different From === in JavaScript? Strict vs Loose Equality
Explained, FREECODECAMP() (Feb. 14. 2023), https://www.freecodecamp.org/news/

 loose-vs-strict-equality-in-javascript [https://perma.cc/V7EV-9TS9].

186 72 UCLA L. REV. DISC. 174 (2024)

Next, simple errors can cause software to function differently than intended.
Even when programmers use correct scientific principles, apply those principles
correctly, conceive of logically sound program design, thoroughly consider
relevant use-cases, and correctly conceive “imported” code, they can still make
typos and confuse words. Even experienced programmers make typos at a high
frequency.70 This can lead to tens of thousands of errors in any given program.71
Recall the previous example of programming terms: small errors such as typing
“==” instead of “===” produce critical errors all the same.

In addition, properly designed and implemented software can develop errors
when its outside code is updated. Such updates are often necessary for security,
improvements, and compatibility with newer products. But by design, updated
code is changed code, and these changes can interact with programs in unexpected
ways.72 The complex mix of old and new code in modern programs means that
each update carries the risk of introducing new errors.73

2. Handling Errors

While programming, developers employ various methods to reduce the risks
from the errors discussed above. But software has several characteristics that make
removing and mitigating errors particularly challenging.

First, software errors are hard to remove because they are hard to find. The
inputs and outputs of software are generally connected by a series of discrete
decisions: if a given condition is true, one section of code is used; otherwise,
another section is used.74 As such, the change in output across changes in inputs is
discontinuous. That is, small changes in inputs can flip a program’s decision,
causing the software to run entirely different code and create a radically different

70. See Chessman, supra note 61, at 186–89.
71. Id. at 187.
72. See, e.g., Jamie Lynch, The Worst Computer Bugs in History: The Ariane 5 Disaster, BUGSNAG

(Sept. 7, 2017), https://www.bugsnag.com/blog/bug-day-ariane-5-disaster [https://
 perma.cc/VE2D-BGUH] (explaining how incompatible code reused from the Ariane 4 caused

the Ariane 5 to experience rocket failure and crash, costing $370 million).
73. Erik Dietrich, Learning a Healthy Fear of Legacy Code, DAEDTECH (June 26, 2024),

https://daedtech.com/learning-healthy-fear-legacy-code [https://perma.cc/38LA-XLT9]
(“[M]ost of our efforts in software development involve a blend of new and old code. We write
some new code, stuff it into some existing code, and then try to figure out how the two things
will behave together in production.”).

74. See Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg, David
G. Robinson & Harlan Yu, Accountable Algorithms, 165 U. PA. L. REV. 633, 648 n.41 (2017)
(asserting that source code analysis can reveal different conditional behaviors for inputs above
or below a threshold).

When Disciplines Disagree 187

output.75 This discontinuous relationship between inputs and outputs makes it
difficult to verify that a program is error-free by testing it. Accuracy on a sample of
inputs cannot be reliably extrapolated to other inputs.76 As such, software
verification cannot rely on testing to find errors like other disciplines.77

Second, software errors are hard to mitigate because their effects are hard to
predict. Mitigation works by reducing the impact of unknown errors.78 If a
program still generates the correct output when an error occurs, then the risk from
the error is low even if it is never removed. But error-tolerant techniques are
difficult to implement and assess.

Compare, for example, multiple-version programming with
overengineering. An engineer can preempt errors in the design and construction
of a bridge by “overengineering”—adding more material and constructing the
bridge to withstand far more than its expected load, but programmers cannot
similarly “add more material” and rerun identical code to mitigate an error:
duplicating the program would duplicate the error. Instead, in “multiple-version
programming,” developers create different code to perform the same task and
compare the results.79 But this is still of questionable efficacy.80 To mitigate the
error, the versions must differ where the error exists. Because it is challenging to

75. See Rushby, supra note 65, at 5–6.
76. Igor Ushakov, Reliability: Past, Present, Future, 1 RELIABILITY: THEORY & APPLICATION 10, 11

(2006) (“There is no such concept as a ‘sample’ for software”).
77. Dick Hamlet, Continuity in Software Systems, 27 ACM SIGSOFT SOFTWARE ENG’G NOTES 196,

196 (2002) (“Most engineering artifacts behave in a continuous fashion, and this property is
generally believed to underlie their dependability. In contrast, software systems do not have
continuous behavior, which is taken to be an underlying cause of their undependability.”);
Rushby, supra note 65 (“[T]he traditional disciplines are founded on science and mathematics
and are able to model and predict the characteristics and properties of their designs quite
accurately, whereas software engineering is more of a craft activity, based on trial and error
rather than calculation and prediction.”).

78. Michael R. Lyu, Software Reliability Engineering: A Roadmap, FUTURE OF SOFTWARE ENG'G 153,
157 (2007) (outlining common fault tolerant techniques and models).

79. Lorenzo Strigini, Fault Tolerance Against Design Faults, in DEPENDABLE COMPUTING SYSTEMS:
PARADIGMS, PERFORMANCE ISSUES, AND APPLICATIONS 213, 217–19 (Hassan B. Diab & Albert
Y. Zomaya eds., 2005); Luping Chen & John H. R. May, A Diversity Model Based on Failure
Distribution and its Application in Safety Cases, 65 IEEE TRANSACTIONS ON RELIABILITY 1149,
1150 (2016) (“Applications of software diversity can be found in critical flight-controllers,
railway signaling and control systems, and nuclear reactor protection systems.”).

80. Rushby, supra note 65, at 4 (outlining scholars’ doubts as to whether multiple-version software
“provides any significant additional assurance of safety”); JOHN THOMAS, FRANCISCO LUIZ DE
LEMOS, NANCY LEVESON, EVALUATING THE SAFETY OF DIGITAL INSTRUMENTATION AND
CONTROL SYSTEMS IN NUCLEAR POWER PLANTS 4–5 (2012) (“[People] do not make mistakes in
a random fashion: Therefore, independently developed software is very likely to contain
common cause failure modes.”).

188 72 UCLA L. REV. DISC. 174 (2024)

predict the location of an unknown error, experts worry that multiple-version
programming may only give developers false confidence in their products’
reliability.81 Recall again the previous example of programming terms: a
programmer can verify their output across a hundred different versions of a
program and still produce faulty data if they misuse the term “===”in every
version.

B. Evaluating Software

Software errors are prevalent, arise from multiple sources, are hard to
remove, and are hard to mitigate. As such, assessing the reliability of software is
challenging. To overcome these challenges, developers commonly use two
methods: validation testing and source code review. These methods have different
limitations and complement each other, although error-resistant programming
practices are also typically needed to make programs sufficiently reliable.

Through these methods and practices, the software industry has developed
standards for determining when programs are sufficiently reliable. But, due to the
wide range of potential implementation errors in software development,82 these
assessments are highly individualized inquiries. Thus, while the computer science
scientific community routinely accepts the validity of new concepts and ideas, it
does not typically evaluate or accept specific software products.

These characteristics of software assessment and computer science practices
have three important implications, which will be drawn out in Parts II and III.
First, they help explain the relevance of computer science expertise. Software
errors are common, handling software errors is hard, and—as this Subpart will
show—computer science experts have developed substantial specialized expertise
in calculating software risk. This suggests that courts are wrong when they
determine that forensic expertise is sufficient to assess forensic software. Second,
these characteristics help explain the risks from overreliance on validation studies.
Implementation errors are common and—as this Subpart will show—validation
studies have significant shortcomings. This suggests that courts are conducting
insufficient analyses when they only check for implementation errors via
validation studies. Third, these characteristics help explain the importance of

81. See Rushby, supra note 65, at 4 (questioning whether any assurance from multiple-version
programming is quantifiable).

82. See supra Subpart I.A.1 (exploring how software built upon valid scientific principles can still
contain errors if the developers misunderstand the science, misunderstand their software, fail
to foresee certain inputs, misunderstand the outside software they rely upon, make simple
errors, or mishandle software updates).

When Disciplines Disagree 189

computer science standards. The computer science scientific community—as this
Subpart will show—typically evaluates the effectiveness of validation methods, not
the validity of specific programs. As such, when courts ask whether software-
generated evidence is deduced from principles that are generally accepted within
the relevant scientific community, they should review the methods the developers
used to address and analyze error risk—not just software-specific experiments.

1. Assessing Reliability

One method for assessing the reliability of software is validation testing. This
method entails providing a program with inputs for which there are known correct
outputs and checking whether the program’s actual outputs match. Since testing
every plausible situation is typically impossible, it is common to group “essentially
similar” behaviors for testing.83 But the discontinuity of software behavior makes
such groupings difficult.84 Seemingly minor changes in inputs can trigger serious
software errors.85 Additionally, depending on the kind of error, it may not be
obvious when an error has occurred.86

Beyond these general limits, validation tests are particularly ill-suited to
evaluating probabilistic genotyping software (PGS). Developers of DNA
matching software frequently argue that access to source code is unnecessary
because validation studies in peer-reviewed journals are sufficient to establish
efficacy.87 Yet compared to other software tests, validation involving DNA is
especially narrow in scope. While some programs can be tested on massive
databases, DNA samples are considerably harder to acquire. The most recent
TrueAllele validation studies had samples derived from twenty, four, and nine
people, respectively.88 Testing is less effective at catching errors when conducted

83. Rushby, supra note 65, at 5.
84. Id. at 13–14; see Ricky W. Butler & George B. Finelli, The Infeasibility of Quantifying the

Reliability of Life-Critical Real-Time Software, 19 IEEE TRANSACTIONS ON SOFTWARE ENG’G 3
(1993).

85. See, e.g., Vishal Singh & Prerna Chaudhary, Y2K38: The Bug, 2 INT’L J. ENG’G & ADVANCED
TECH. 157, 157 (2012) (predicting, akin to Y2K, mass systems failure at the seemingly arbitrary
time 03:14:07 UTC on January 19, 2038).

86. See, e.g., NASA EARTH OBSERVATORY, supra note 44.
87. See, e.g., Computers Are Helping Justice, CYBERGENETICS (June 16, 2017),

https://www.cybgen.com/information/newsroom/2017/jun/Cybergenetics-to-New-York-
Times-Computers-are-helping-justice.shtml [https://perma.cc/3D3J-6EUL]. The company
has presented similar arguments in court. See, e.g., Declaration of Mark W. Perlin, State v. Fair,
No. 10–1-09274–5 SEA (Wash. Super. Ct. Apr. 1, 2016).

88. David W. Bauer, Nasir Butt, Jennifer M. Hornyak & Mark W. Perlin, Validating TrueAllele®
Interpretation of DNA Mixtures Containing Up To Ten Unknown Contributors, 65 J. FORENSIC

190 72 UCLA L. REV. DISC. 174 (2024)

over a small sample size, especially errors specific to races that comprise only a
small proportion of the population.89

Limited testing also narrows the extent to which validation studies can verify
empirical assumptions built into the software. PGS relies on assumptions
about DNA samples,90 but validation studies only verify these assumptions for
samples similar to those tested. For example, if the blood from a crime scene
contains contamination or DNA from a large number of people, but the
validation studies did not test the software in similar circumstances, then those
studies provide limited support for the software’s efficacy.91

Due to these limitations, the computer science community often
supplements validation tests with direct review of the program’s source code.92
Access to source code alleviates many of the issues with validation studies, as the
outcomes from previous disclosure orders have demonstrated.93 It allows experts
to identify typos and understand the logic of the software. This helps them identify
whether the logic is incorrect, whether the logic is predicated on a
misunderstanding, and whether there are relevant conditions that the validation
studies did not test.94 For these reasons, some scholars doubt that meaningful
software assessment is possible without source code review.95

Certainly, source code review is a time-consuming process. But reviewers do
not have to analyze a program in its entirety for the review to be effective. It is
quicker to verify the overarching logic of a program than to comb through each

SCI. 380, 381 (2020) (sampling from “20 preset male and female individuals of predominantly
Caucasian descent”); Mark W. Perlin, Efficient Construction of Match Strength Distributions
for Uncertain Multi-Locus Genotypes, 4 HELIYON, Oct. 2018, at 11 (using a sample derived from
four people); Nancy A. Stokes, Cristina E. Stanciu, Emily R. Brocato, Christopher J. Ehrhardt
& Susan A. Greenspoon, Simplification of Complex DNA Profiles Using Front End Cell
Separation and Probabilistic Modeling, 36 FORENSIC SCI. INT’L: GENETICS 205, 206 (2018) (using
a sample size of nine). For a full list of TrueAllele studies, see Publications, CYBERGENETICS,
https://www.cybgen.com/information/publication/

 page.shtml [https://perma.cc/S9HV-HKAA].
89. See Lacambra et al., supra note 53.
90. See JILL R. PRESSER & KATE ROBERTSON, AI CASE STUDY: PROBABILISTIC GENOTYPING DNA

TOOLS IN CANADIAN CRIMINAL COURTS 14 (2021).
91. Id.
92. Ince et al., supra note 31.
93. Supra notes 44–56 and accompanying text.
94. See Kroll et al., supra note 74, at 648–49, 650–52.
95. See, e.g., Ince et al., supra note 31 (“[A]nything less than release of actual source code is an

indefensible approach for any scientific results that depend on computation”); Morin et
al., supra note 31 (“In the absence of source code, the inner workings of a program cannot be
examined, adapted, or modified.”); see CARRIER, supra note 31 (“[O]pen source tools may more
clearly and comprehensively meet the [Daubert] requirements [for admissibility]”).

When Disciplines Disagree 191

line of code. This lesser verification can still catch many logical errors—including
misunderstandings of scientific principles, misunderstandings of code, and
unforeseen inputs.

A rushed source code review can also be used with relative ease to ensure
compliance with certain industry standards. To alleviate the limitations of
standalone source code analysis and validation tests, best practices in software
development can include methods such as hazard analysis, traceability, and
defensive programming.96 Built-in checks, for example, are a form of defensive
programming which can catch common incorrect behaviors by specifically
checking whether they are occurring.97 If a program uses sensors with an expected
range of readings, a programmer can add a check which warns the user if the
readings ever exceed that range.

The success of such practices, however, relies on whether they are adopted,
and whether they are adopted thoroughly. Without source code disclosure,
reviewers are unable to evaluate the implementation of error-resistant code, which
compromises incentives for developers and the potential for these standards as a
solution.98 Combined, source code disclosure and compliance with best practices
can complement validation tests. It can be far less resource-intensive for a reviewer
to determine whether formal standards are being followed than to evaluate an
entire program. Industry standards and source code disclosure together can help
address the limitations of each and provide a potent means of verifying forensic
software.

Still, even with validation tests, source code review, and best programming
practices, there is often a substantial gap between the trustworthiness that users
need and computer scientists’ capacity to measure and achieve that
trustworthiness.99 Determining the size of this gap is not a trivial task. Meaningful

96. See Software Reliability Techniques in APPLIED R&M MANUAL FOR DEFENCE SYSTEMS 5, 7, 14–
15 (2012).

97. See, e.g., Erlend Oftedal, Code-Level Defenses, in SQL INJECTION ATTACKS AND DEFENSE 365,
379–80 (Justin Clarke-Salt ed., 2d ed. 2012) (discussing the specific errors to check for when
“validating input”).

98. The risk of even public employees lying about the formal standards and logic that they
implement is not hypothetical. See, e.g., Lacambra, et al., supra note 53 (“A Forensic Statistical
Tool (FST) was developed in 2010 by New York City’s Office of the Chief Medical Examiner
(OCME). For years, OCME fought any independent review of FST’s source code and other
software development materials, even under a protective order The actual functioning of
the software, revealed upon inspection of the source code, did not use the methodology
publicly described in sworn testimony and peer-reviewed publications.”).

99. Jonathan P. Bowen & Victoria Stavridou, Formal Methods and Software Safety, 25 IFAC SYMP.
SERIES 93, 97 (1992).

192 72 UCLA L. REV. DISC. 174 (2024)

assessments of software must consider the known or potential error rate, but the
error rate in a program can be complex due to its discontinuity across different
inputs. Seemingly trivial differences between inputs can make the risk of error
change from nonexistent to guaranteed.100 Not knowing what those high-risk
circumstances are, or if they even exist, makes validating software a challenging
task. But, while guaranteed software performance is elusive, strict industry
standards allow reputable companies to reach the certainty required for even
safety-critical programs, such as software for airplanes, medical devices, and
weapons systems.

Taken together, the techniques discussed in this Subpart allow computer
science experts to evaluate the likelihood of software errors, but the complexity
and nuance of these problems mean that such determinations require specialized
expertise. When forensic experts alone opine on these issues, they are liable to
misunderstand why this nuance makes certain assurance methods necessary.
When the norms differ between the computer science and forensic science
academic communities, an undiscerning court might ignore relevant standards
and fail to require necessary tests.

2. Scientific Acceptance

The wide range of potential implementation errors in software development
also affects what it means for the computer science scientific community to accept
software. This has important implications for courts because the dominant
admissibility standards ask whether the evidence is derived from principles with
general acceptance from the relevant scientific community. Most courts center
this inquiry around experiments, or validation tests,101 but the role of experiments
within the academic computer science community is complicated.102 The

100. Supra notes 74–76 and accompanying text.
101. See, e.g., United States v. Gissantaner, 990 F.3d 457, 464–65 (6th Cir. 2021); see infra Part III.

TrueAllele’s developers push for this publicly as well. MARK W. PERLIN, CYBERGENETICS,
INNOVATION AND TRANSPARENCY FOR RELIABLE FORENSIC SOFTWARE 4 (2022),
https://www.cybgen.com/information/presentations/2022/SCU/Perlin-Innovation-and-
transparency-for-reliable-forensic-software/handout.pdf [https://perma.cc/6N92-5GJ4]
(“[Validation tests are] how real scientists assess reliability.”).

102. Matti Tedre & Nella Moisseinen, Experiments in Computing: A Survey, SCI. WORLD J., Jan.
2014, at 1 (“The view that computing is an inseparable combination of three very different
intellectual traditions—theory, engineering, and empirical science—complicates many
debates about computing. One such debate is the ’experimental computer science’ debate. The
words ‘experiment’ and ‘experimental’ are understood very differently between the traditions
. . . .”).

When Disciplines Disagree 193

community generally evaluates the effectiveness of validation methods, not the
validity of specific programs. As such, to properly determine whether software has
general acceptance, courts should emphasize computer science standards and not
expect in-depth software-specific critiques from scholars.

While experiments are central in science, they provide limited information
to computer scientists. Software discontinuity makes it challenging to generalize
the behavior of a specific program,103 and implementation error makes it
challenging to generalize behaviors across programs. Indeed, some scholars go so
far as to argue that there can be “no academic discipline of computing but just
eclectic knowledge about particular machines.”104 While other computer
scientists view experiments more favorably, they rarely investigate the efficacy of
specific programs.105 In academia, specific programs tend to be used as a proof of
concept rather than the object of review.106 In cases where specific products are
tested, the limits of empirical tests are widely recognized. For life-critical software,
scholars have found that it is infeasible for experimental validation alone to
provide adequate verification.107

In contrast, there is computer science scholarship on more generalizable
principles, such as the effectiveness of error-handling methods.108 As such, insofar
as the computer science community finds general acceptance for principles from
which software-generated evidence is deduced, those principles will typically be
generalized standards regarding the sufficiency of error-handling methods.109 The
computer science community will very rarely develop general acceptance of a
specific program. And even when such an acceptance develops, it will be

103. See supra notes 74–77 and accompanying text.
104. See Tedre & Moisseinen, supra note 102, at 5.
105. See id. at 6–7 (discussing five views on experiments in computer science); Marvin V. Zelkowitz

& Dolores R. Wallace, Experimental Models for Validating Technology, COMPUTER, May 1998,
at 23. “Experimentation is one of those terms that is frequently used incorrectly in the
computer science community.” Id. Here, “experiment” really means an example that the
technology exists or an existence proof that the technique can be employed. “Very rarely does
[it] involve any collection of data to show that the technology adheres to some underlying
model or theory of software development or that the software is effective.” Id.

106. Id. at 23, 29.
107. See Butler & Finelli, supra note 84, at 7–10.
108. See, e.g., Algirdas Avižienis, Jean-Claude Laprie, Brian Randell & Carl Landwehr, Basic

Concepts and Taxonomy of Dependable and Secure Computing, 1 IEEE TRANSACTIONS
DEPENDABLE & SECURE COMPUTING 11, 24–29 (2004).

109. See, e.g., Raj kamal Kaur, Babita Pandey & Lalit Kumar Singh, Dependability Analysis of Safety
Critical Systems: Issues and Challenges, 120 ANNALS OF NUCLEAR ENERGY 127 (2018) (surveying
studies which sought to analyze and improve the dependability of safety critical systems).

194 72 UCLA L. REV. DISC. 174 (2024)

predicated on generalizable principles regarding the sufficiency of the error-
handling methods used on that program.

Notably, because of the computer science community’s focus, what
experiments exist for specific forensic software tend to be in publications
published and peer-reviewed by the forensic science community, not the
computer science community.110 Such studies are subject to general critiques that
have been made of forensic science as a discipline.111 More specifically, forensic
science standards do not address the possibility of discontinuous implementation
errors or the utility of standard software validation practices.112 Determining
when validation studies are sufficient to evaluate software dependability requires
specialized expertise.113 This expertise, however, is notably absent in courtroom
admissibility hearings.

II. ADMITTING SOFTWARE

To protect against junk science, courts tend to evaluate the admissibility of
scientific evidence through multiple distinct prongs. The diversity of these prongs
is essential to the robustness of the evaluation. However, in hearings on forensic
evidence created by computer programs, courts have consistently found that
litigants can satisfy every prong with the same two sources of evidence: validation
studies and the soundness of software’s underlying principles. As discussed above,
validation studies have substantial limitations, and underlying principles are only
one potential source of software error.

Two standards of admissibility dominate the landscape. Federal courts use
the five-factor standard established in Daubert v. Merrell Dow Pharmaceuticals,

110. See, e.g., Mark W. Perlin, Matthew M. Legler, Cara E. Spencer, Jessica L. Smith, William P.
Allan, Jamie L. Belrose & Barry W. Duceman, Validating TrueAllele® DNA Mixture
Interpretation, 56 J. FORENSIC SCIS. 1430 (2011); Bauer et al., supra note 88.

111. See, e.g., Harry T. Edwards, Solving the Problems That Plague the Forensic Science Community,
50 JURIMETRICS 5 (2009); Claude Roux, Frank Crispino & Olivier Ribaux, From Forensics to
Forensic Science, 24 CURRENT ISSUES CRIM. JUST. 7 (2012).

112. See, e.g., AM. ACAD. FORENSIC SCI. STANDARDS BD., ANSI/ASB STANDARD 018, STANDARD FOR
VALIDATION OF PROBABILISTIC GENOTYPING SYSTEMS (2020), https://www.aafs.org/sites/

 default/files/media/documents/018_Std_e1.pdf [https://perma.cc/4UHQ-KKPX].
113. See generally Avižienis et al., supra note 108 (describing the numerous intricate considerations

when designing and maintaining a secure and dependable computing system).

When Disciplines Disagree 195

Inc.,114 while state courts are split between Daubert, the earlier standard from Frye
v. United States,115 Daubert-Frye hybrids,116 and the occasional local statute.117

The Frye standard relies on the scientific community as gatekeepers, using
the extent of the community’s acceptance to determine the weight and status of the
expert’s theory or technique. In contrast, the Daubert standard treats acceptance
by the scientific community as one of many factors to be considered by the judge.
The other factors are disconnected from the scientific community’s practice and
encourage a more holistic judicial consideration by the court.118 This Part will
analyze the treatment of DNA-matching software in Frye and Daubert hearings,
respectively.

A. Frye Hearings

In Frye, the D.C. Circuit held that evidence must have “gained general
acceptance” from the relevant scientific community to be admitted.119 This was
intended to be a higher bar than expert testimony: since general community
acceptance is necessary, one or even several expert opinions may be insufficient to
establish evidence as admissible.120 In practice, however, this higher bar has not
been translated into a thorough analysis of software. Frye hearings routinely
evaluate forensic software based only on the results of validation studies and the
soundness of underlying scientific principles.

Validation studies test software by providing the program with known
samples and recording the error rate. While independent researchers may not be
able to directly observe how a trade secret program works, they can test samples to
determine how often the software provides the correct output. In doing so, these
researchers treat the software like a “black box:” the inner workings of the system

114. 509 U.S. 579 (1993).
115. 293 F. 1013 (D.C. Cir. 1923).
116. David E. Bernstein & Jeffrey D. Jackson, The Daubert Trilogy in the States, 44 JURIMETRICS 351,

351–52 (2004); see also Chessman, supra note 61, at 219 (arguing that evidence prohibited by
each test standing alone is likely also prohibited by their combination).

117. MATTHIESEN, WICKERT & LEHRER, S.C., ADMISSIBILITY OF EXPERT TESTIMONY IN ALL 50 STATES
3–9 (2023), https://www.mwl-law.com/wp-content/uploads/2018/02/ADMISSIBLITY-OF-
EXPERT-TESTIMONY-CHART-00220033x9EBBF.pdf [https://perma.cc/CV8W-
EGAF] (finding that only seven states—Maine, Minnesota, Missouri, Nevada, North Dakota,
South Carolina, Virginia—do not use either the Daubert or Frye standard, but many apply
standards “substantially similar to Daubert” or rely on Daubert as persuasive authority).

118. See discussion accompanying infra notes 163–168.
119. Frye, 293 F. at 1014.
120. See Paul C. Giannelli, The Admissibility of Novel Scientific Evidence: Frye v. United States, a

Half-Century Later, 80 COLUM. L. REV. 1197, 1205 (1980).

196 72 UCLA L. REV. DISC. 174 (2024)

are hidden, but by identifying the program’s outputs for various known inputs,
researchers can develop an understanding of its behavior.121

Meanwhile, the practice of verifying underlying scientific principles tests
software by evaluating the “rules” about the natural world that the software relies
on to operate correctly. For example, in Frye, the defendant took a lie detection
test, claimed he was innocent, and presented the results of the test as evidence of
his innocence.122 One of the test’s underlying principles was that a person’s blood
pressure level spikes when they lie and remains steady when they tell the truth.
This principle was not accepted in Frye.123 But if it had been sufficiently
established, then—combined with the evidence of James Frye’s blood pressure
remaining steady—it would have been reasonable under the Frye standard for an
expert to deduce that James Frye’s statements were truthful.

Validation studies and the verification of underlying principles cannot
reliably detect many kinds of software errors.124 Yet admissibility hearings often
consider little else. Decisions from New York courts illustrate the widespread
judicial dependence on validation studies and underlying principles. These courts
often hold Frye hearings to evaluate DNA matching software like FST, TrueAllele,
and STRmix. Defendants rarely succeed in excluding evidence at these hearings.
In New York, there is only one case of note in which such evidence was not
admitted.125 This case was an outlier and has been criticized by later rulings.126

Much more frequently, the hearings resemble that of State v. Wakefield,127
where the trial court admitted evidence from TrueAllele software under the Frye
test.128 The court separately analyzed five categories of evidence: “peer review,”129
“validation studies,”130 the “scientific community,”131 “legal acceptance,”132 and

121. See, e.g., Bauer et al., supra note 88, at 395–97.
122. Frye, 293 F. at 1013–14.
123. Id.
124. See supra Subpart I.B.
125. People v. Collins, 15 N.Y.S.3d 564, 629 (Sup. Ct. 2015) (concluding that “evidence derived both

from high sensitivity analysis and from the [Forensic Statistical Tool, a new software program]
are not yet proved to be admissible under the Frye test”); see also United States v. Wilbern, No.
17-CR-6017-CJS, 2019 WL 5204829, at *8 (W.D.N.Y. Oct. 16, 2019) (“The decision in Collins
appears to be an ‘outlier among the forensic DNA software program cases in New York.’”
(quoting People v. Bullard-Daniel, 42 N.Y.S.3d 714, 724 (Niagara Cnty. Ct. 2016))).

126. People v. Carter, No. 2573/14, 2016 N.Y. Misc. LEXIS 166, at *9–19 (N.Y. Sup. Ct. 2016).
127. 9 N.Y.S.3d 540 (2015).
128. Id. at 543–46.
129. Id. at 543.
130. Id. at 543–44.
131. Id. at 544–45.
132. Id. at 545.

When Disciplines Disagree 197

“expert testimony.”133 But, despite being different in name, the sole bases of the
analysis under each category were validation studies and the verification of
underlying scientific principles.134 Indeed, so long as TrueAllele’s developers
shield its source code135 and do not report any error-mitigation techniques,136 it is
unclear what else can be analyzed.

The first two categories of evidence in Wakefield were “peer review[ed]”
articles that described validation studies and “validation studies” themselves.137
Evidence in the third category—acceptance from the “scientific community”—
comprised approval from two bodies whose determinations were based on
validation studies: the New York State Commission on Forensic Science138 and the
New York State Police.139 Evidence from the fourth category—“legal
acceptance”—reviewed the findings of previous admissibility hearings. These
hearings examined factors similar to those used in Wakefield. As such, their
decisions were based on validation studies and acceptance of scientific principles
as well.140 Finally, the fifth category, “expert testimony,” contained testimony from
TrueAllele inventor Dr. Perlin and evidence that researchers had presented their
validation studies on TrueAllele in conferences.141 Apart from Dr. Perlin’s
personal knowledge of TrueAllele—which the court did not discuss—the evidence

133. Id. at 546.
134. It is probable that the expert opinions from TrueAllele developers were also based on their

access to proprietary information on TrueAllele, but the Wakefield court does not consider this
in its analysis. See generally id. Even if the court had considered it, the information is biased
and uncontestable by the defendant.

135. Commonwealth v. Foley, 38 A.3d 882, 889–90 (Pa. Super. Ct. 2012).
136. See New York State Subcommittee, CYBERGENETICS (May 20, 2011), https://www.cybgen
 .com/information/presentations/2011/NYSDNASUB/Subcommittee/page.shtml

[https://perma.cc/TH4D-LRAY] [hereinafter NY TrueAllele Review].
137. Wakefield, 9 N.Y.S.3d at 543–44; see also CYBERGENETICS, supra note 88. As the TrueAllele

peer-reviewed publications are validation studies—either validating aspects of the TrueAllele
technique or the software as a whole—the difference between the two categories is unclear.

138. Press Release, Cybergenetics, New York State DNA Subcommittee Scientists Unanimously
Recommend Regulatory Approval of Cybergenetics TrueAllele for Forensic Casework (May
20, 2011), https://www.cybgen.com/information/newsroom/2011/may/New-York-State-
DNA-Subcommittee-scientists-unanimously-recommend-regulatory-approval-of-
Cybergenetics-TrueAllele-for-forensic-casework.shtml [https://perma.cc/5CUS-TYAB]; see
also NY TrueAllele Review, supra note 136.

139. NY TrueAllele Review, supra note 136; Wakefield, 9 N.Y.S.3d at 544–45 (describing the New
York State Police’s approval of TrueAllele based on the New York State Commission on
Forensic Science’s determination and “three separate validation studies”).

140. Wakefield, 9 N.Y.S.3d at 545 (relying on People v. Wesley, 633 N.E.2d 451, 456 (N.Y. 1994),
which based its determination on peer reviewed articles and the fact that the underlying
principles are “widespread in biology”).

141. Id. at 545–46.

198 72 UCLA L. REV. DISC. 174 (2024)

in this category, just like all the others, was ultimately based only on validation
studies and underlying scientific principles.

While each category of evidence relied heavily on validation studies, the
Wakefield court did not address their limitations in evaluating software, despite
these shortcomings being well recognized by computer science experts.142 And
when listing the Commission members’ credentials, the court identified no
expertise in computer science or software.143 When discussing expert testimony,
there was again no mention of computer science or software expertise.

The trial court in People v. Bullard-Daniel144 admitted evidence from STRmix
under Frye on similar grounds.145 Their decision was largely based on the
testimony of the People’s witness, Dr. Simich, who was “thoroughly familiar with
the application of the STRmix software.”146 His lab conducted validation studies,
and he reviewed numerous articles that had done the same. The court also noted
that the mathematical models—the underlying scientific principles—were non-
controversial and have been widely used in fields such as “weather forecasting,
computational biology, linguistics, genetics, engineering, physics, aeronautics,
finance, and social sciences.”147

But the trustworthiness of underlying principles, especially principles as
general as these, does not protect against implementation errors. Like in
Wakefield, validation tests were the only evidence that the developers had not
misunderstood the underlying principles, misdesigned the software, used
outdated code, or introduced simple errors.148 Yet again, there was no inquiry into
error mitigation or the sufficiency of validation studies given software
discontinuity.149

Still, Bullard-Daniel is an influential decision that has persuaded federal and
state courts to admit evidence from STRmix in cases like People v. Lopez150 and

142. See supra Subpart I.A.2.
143. Wakefield, 9 N.Y.S.3d at 544–45.
144. 42 N.Y.S.3d 714 (Niagara Cnty. Ct. 2016).
145. Id. at 723–26.
146. Id. at 721 (emphasis added).
147. Id.
148. All of which are substantial risks in programming. See supra Subpart I.A.1.
149. See supra Subpart I.A.2; JOHN RUSHBY, NASA-CR-4551, FORMAL METHODS AND DIGITAL

SYSTEMS VALIDATION FOR AIRBORNE SYSTEMS 8 (1993) (“Tests provide information on only the
state sequences actually examined; without continuity there is little reason to suppose the
behavior of untested sequences will be ‘close’ to tested ones, and therefore little justification for
extrapolating from tested cases to untested ones.”).

150. Indictment No. 3927/16 (N.Y. Sup. Ct. Apr. 27, 2018).

When Disciplines Disagree 199

People v. Yates.151 The consistency of these decisions is such that many courts have
stopped making Frye inquiries entirely, admitting the evidence without any
independent analysis.152

Because traditional legal databases offer limited coverage of state trial courts,
it is unclear precisely how often Frye analyses rely solely on validation studies and
underlying scientific principles. But the practice is likely widespread. First, a
variety of courts engage in the practice, including federal courts,153 state courts
outside of New York,154 and an international court which almost exclusively relied
on the New York State Commission on Forensic Science’s recommendation to
adopt TrueAllele.155 Second, it is unclear what else admissibility could be based on.
TrueAllele’s developers refuse to provide the information needed for additional
verification methods,156 such as overengineering through multiple-version
software or performing traceability157 This leaves the courts with only validation
studies, underlying scientific principles, and derivatives thereof.

For DNA matching, this pattern might reverse. In 2021, State v. Pickett158
marked New Jersey’s first precedential appellate holding requiring developers to
provide the source code to their DNA matching program.159 It recognized the
implementation gap between theoretical validity and actual effectiveness, and so

151. Indictment No. 10663-2016 (NY Sup. Ct. Oct. 4, 2018). See United States v. Lewis, 442 F. Supp.
3d 1122, 1163 (D. Minn. 2020) (describing Bullard-Daniel’s influence on People v. Lopez,
Indictment No. 3927/16 (N.Y. Sup. Ct. Apr. 27, 2018) and People v. Yates, Indictment No.
10663-2016 (N.Y. Sup. Ct. Oct. 4, 2018)).

152. See, e.g., People v. Carter, No. 2573/14, 2016 N.Y. Misc. LEXIS 166, at *9 (N.Y. Sup. Ct. 2016)
(“[T]he vast majority of the courts of this state that have considered the admissibility of FST
have concluded that the techniques used to develop FST are not new, and instead are based on
well-established mathematical and statistical principles.”).

153. See infra Subpart II.B.
154. See, e.g., People v. Superior Ct. (Chubbs), No. B258569, 2015 WL 139069, at *4 (Cal. Ct. App.

Jan. 9, 2015) (using the Kelly/Frye test); Commonwealth v. Foley, 38 A.3d 882, 888 (Pa. Super.
Ct. 2012) (admitting TrueAllele because it is “a refined application of the ‘product rule’ . . .
method” and “scientific evidence based on the product rule is admissible”).

155. See Ruling on Voir Dire at 16–17, Regina v. Duffy, ICOS No. 09/143857 (N. Ir. Crown Ct. Dec.
1, 2011).

156. NY TrueAllele Review, supra note 136.
157. See infra Subpart IV.B.1; see also Rushby, supra note 65, at 12 (discussing multiple-version

software); About Traceability, CTR. EXCELLENCE FOR SOFTWARE & SYS. TRACEABILITY,
http://sarec.nd.edu/coest/aboutTraceability.html [https://perma.cc/Q8ED-9RMX]
[hereinafter COEST] (“[The U.S. Food and Drug Administration (FDA) requires] that all
aspects of the design are traceable to software requirements the [U.S. Federal Aviation
Administration (FAA)] states that software developers need to have ways of demonstrating
traceability between design and requirements”).

158. 246 A.3d 279 (N.J. Super. Ct. App. Div. 2021).
159. Tamar Lerer, Check the Sources: Why Secret Computer Code Matters and How Defense Counsel

Can Get It, 45 CHAMPION 14 (2021).

200 72 UCLA L. REV. DISC. 174 (2024)

addressed the need to ensure that the source code “functions as the science
underpinning probabilistic genotyping necessitates.”160 But, while this decision
may signal the start of a shift in Frye hearings on DNA matching software, for now
it remains an anomaly.161 And should such a change occur, like New Jersey’s shift
towards disclosing the source code of breathalyzers,162 courts appear liable to
insufficiently scrutinize whatever forensic technology comes next.

B. Daubert Hearings

While the Daubert standard is generally considered more restrictive than
Frye,163 in hearings on forensic software the analyses and results have been largely
the same. Federal courts (and state courts in Daubert jurisdictions) also habitually
rely only on validation studies and the soundness of the software’s underlying
principles, despite Daubert’s multi-pronged test.

In 1993, the U.S. Supreme Court created Daubert’s five-factor balancing
test.164 The test is flexible, creating more room for judicial discretion as Daubert
definitively shifted Frye’s “gatekeeping role” for the admission of scientific
evidence from the scientific community to the judge.165 Under Daubert, it should
be examined whether the theory or technique: (1) is scientific knowledge or
falsifiable; (2) “has been subjected to peer review and publication”; (3) has a known
or potential rate of error; (4) has “the existence and maintenance of standards
controlling [the technique’s] operation”; and (5) has “widespread acceptance”
among the relevant scientific community.166

160. Pickett, 246 A.3d at 310–11.
161. See, e.g., People v. Burrus, 200 N.Y.S.3d 655, 727–28 (Sup. Ct. 2023) (holding that the IEEE

software standard was not applicable because forensic standards “do not require probabilistic
genotyping programs to meet the IEEE standard”). Over two years after Pickett, courts still fail
to independently ask whether forensic software “has gained general acceptance in the
computer science community to which it also belongs.” Pickett, 246 A.3d at 323.

162. See supra note 51 and accompanying text.
163. See Edward K. Cheng & Albert H. Yoon, Does Frye or Daubert Matter? A Study of Scientific

Admissibility Standards, 91 VA. L. REV. 471, 472 n.6 (2005).
164. Katherine L. Moss, Note, The Admissibility of TrueAllele: A Computerized DNA Interpretation

System, 72 WASH. & LEE. L. REV. 1033, 1040–43 (2015).
165. See Daubert v. Merrell Dow Pharmaceuticals., Inc., 509 U.S. 579, 597 (1993); David L. Faigman,

The Daubert Revolution and the Birth of Modernity: Managing Scientific Evidence in the Age of
Science, 46 U.C. DAVIS L. REV. 893, 907–08 (2013); see also John Eric Smithburn, The Trial
Court’s Gatekeeper Role Under Frye, Daubert, and Kumho: A Special Look at Children’s Cases,
4 WHITTIER J. CHILD. & FAM. ADVOC. 3, 18 (2005).

166. Daubert, 509 U.S. at 580.

When Disciplines Disagree 201

This shift from Frye to Daubert was intended to address the problem of junk
science in criminal cases.167 The additional factors allow judges more discretion in
distinguishing between valid and invalid expert opinions in response to growing
concerns that juries were unsuited for the task.168 In hearings on DNA matching
software, however, the analysis under Daubert and Frye is interconnected to the
extent that some Daubert hearings consider the decisions made in Frye hearings.169

The Daubert hearings on genotyping software also follow a similar pattern to
those under Frye. Courts routinely find that Daubert’s prongs can be satisfied by
only validation studies and verification that the software is based on principles
widely accepted in scientific communities.170 They hold that these two sources of
information are sufficient to evaluate the effectiveness of the forensic software.

Courts could look to computer science experts to determine when additional
software verification is needed.171 But when such expertise is offered, it is regularly
ignored. In a Daubert hearing over STRmix, the district court heard from three
defense experts, including a software engineer and the Dean of the University of
Minnesota Department of Computer Science and Engineering.172 None of the
opposing experts had degrees in computer science. But while the court analyzed
STRmix’s biological and mathematical underpinnings at length,173 it gave no such
treatment to the software design practices. Instead, it relied on standards from
forensic science groups over the Dean’s recommendation.174 Such disregard of

167. See Neufeld, supra note 25, at S109 (“Many thought Daubert would be the meaningful standard
that was lacking in criminal cases and that it would serve to protect innocent defendants.”).

168. See Barefoot v. Estelle, 463 U.S. 880, 916 (1983) (Blackmun, J., dissenting). Justice Blackmun
would go on to write the Daubert decision.

169. In United States v. Wilbern, for example, “[w]ith respect to prior case law on the admissibility
of LCN DNA test results generated by OCME, the Court focused on, carefully read, and
considered three very well reasoned decisions.” No. 17-CR-6017 CJS, 2019 WL 5204829, at *6
(W.D.N.Y. Oct. 16, 2019). One of the decisions assessed OCME under the Daubert standard,
the other two applied “the more stringent Frye.” Id.

170. On December 8, 2023, I ran the following search on Westlaw: [(STRMix TrueAllele “Forensic
Statistical Tool”) AND Daubert]. This located fifty-four cases, twenty-three of which were
federal or state cases where forensic genotyping tools were evaluated under Daubert (the other
cases applied the Frye standard, applied a hybrid standard, or addressed an unrelated matter).
These twenty-three cases consistently demonstrated reliance on validation studies and
scientific principles. See, e.g., United States v. Gissantaner, 990 F.3d 457, 463–68 (6th Cir. 2021)
(organizing its analysis by Daubert’s five prongs and using a combination of validation studies
and scientific theory to satisfy each one).

171. See supra Subpart I.B (discussing the computer science expertise developed to understand and
address software risks).

172. United States v. Lewis, 442 F. Supp. 3d 1122, 1126, 1134 (D. Minn. 2020).
173. Id. at 1135–43 (discussing this at length in Part III, “The Science”).
174. Id. at 1131 (“Those guidelines include standards published by the Scientific Working Group

on DNA Analysis Methods, the Forensic Science Regulator, and the International Society for

202 72 UCLA L. REV. DISC. 174 (2024)

computer science standards and expertise is commonplace in Daubert hearings.175
Although again, most often computer science testimony is not heard at all.

As such, the witnesses who testify in Frye and Daubert hearings tend to be
exclusively from the field in which the software operates. That is, DNA experts
provide testimony regarding DNA identification software. These experts tend to
base their understanding on validation studies that they or their peers have
conducted. This leaves a significant gap in the information before the courts,
namely expertise regarding the proper extent to rely on validation studies.176

III. SHORTCOMINGS OF MODERN HEARINGS

As demonstrated in Part II, during admissibility hearings for trade-secret
protected, software-generated evidence, courts tend to rely on validation studies
and the soundness of underlying principles.177 They ignore the risk of
implementation error and hear near-exclusively from forensic experts. When
computer science experts are present, these experts consistently raise the
possibility of implementation error and are refuted by unresponsive claims.

The software examples in Subpart I.A—the NASA ozone monitoring system,
Ireland medical imaging system, cancer-treatment device Therac-25, and
Australian bank—contained serious hidden errors despite having sound
underlying principles, successful validation tests, and years of use. These errors
were not caught for decades because validation studies cannot test every possible
circumstance that may cause a bug to arise,178 and depending on the kind of error,
it may not be obvious that an error has occurred.179

Forensic Genetics.”). The Lewis Court notes that STRmix does not comply with the standards
from the technology organization Institute of Electrical and Electronics Engineers (IEEE), but
determines that it comes close enough. Id.

175. See, e.g., State v. Watkins, 648 S.W.3d 235, 263–65 (Tenn. Crim. App. 2021); Gissantaner, 990
F.3d at 468; United States v. Jones, No. S4 15-CR-153 (VSB), 2018 WL 2684101, at *8–12
(S.D.N.Y. June 5, 2018), aff’d, 965 F.3d 149, 154 (2d Cir. 2020).

176. See, for example, People v. Bullard-Daniel, where the People “rel[ied] solely on the testimony
of Dr. Simich and the accompanying exhibits.” 42 N.Y.S.3d 714, 719 (Niagara Cnty. Ct. 2016).
When evaluating Dr. Simich’s testimony, the court identified no computer science
background, see id. at 716–19, and it decided that his extensive forensic expertise was
sufficiently comprehensive. Id. at 721 (“As the director of a forensics lab, Dr. Simich is well-
qualified to critique software programs like STRmix.”); accord Affidavit of John P. Simich,
United States v. Pettway, No. 12-CR-103S(1), (2) (W.D.N.Y. Oct. 10, 2016).

177. Supra Part II.
178. See supra notes 74–76 and accompanying text.
179. See supra notes 74–76 and accompanying text.

When Disciplines Disagree 203

These are known limitations in computer science, and as such, the computer
science discipline understands experiments differently. Experiments are
frequently used as proofs of concept rather than as validation for a specific
product.180 In cases where researchers test specific products, the limits of empirical
tests are widely recognized.181 In response to the limits of mere experimentation,
software assurance experts have developed complex methods to assess reliability
more accurately and various programming techniques to improve it.

These established limitations of validation studies are relevant
considerations under current admissibility standards. Both Frye and Daubert
consider general acceptance by the scientific community.182 And under both
standards, multidisciplinary evidence requires acceptance by multiple
disciplines.183 Identifying the relevant communities across disciplines is difficult,
especially under the narrower considerations in Frye.184 But capturing all relevant
expertise is critical and required nonetheless.185 If, when evaluating forensic
software, software experts possess specific pertinent expertise, then courts are
missing a substantial portion of the relevant analysis.

Indeed, computer science expertise is critical to understand the likelihood of
software errors, whether software is being applied outside of its scope, and the
available supplements to validation studies. Critically, treating forensic scientists
as experts on software overlooks the complexity of software validation and grants

180. See Zelkowitz & Wallace, supra note 105, at 23. “Experimentation is one of those terms that is
frequently used incorrectly in the computer science community.” Id. Here, “experiment”
really means an example that the technology exists or an existence proof that the technique can
be employed. “Very rarely does [it] involve any collection of data to show that the technology
adheres to some underlying model or theory of software development or that the software is
effective.” Id.

181. Butler & Finelli, supra note 84, at 7–10.
182. See Smithburn, supra note 165, at 6–7, 9.
183. Simone A. Cole, Out of the Daubert Fire and Into the Fryeing Pan? Self-Validation, Meta-

Expertise and the Admissibility of Latent Print Evidence in Frye Jurisdictions, 9 MINN. J.L. SCI. &
TECH. 453, 480–81 (2008) (“[V]irtually all [Frye] courts have articulated a preference
construing the ‘relevant scientific community’ broadly, rather than narrowly.”). Daubert
analysis is broader still. See Kerri N. Polizzi, How Long Do We Keep Fryeing?: The Future of
Expert Scientific Evidence in California, 20 CHAP. L. REV. 393, 394 (2017).

184. Polizzi, supra note 183 (“This problem [of determining scientific acceptance] is particularly
prevalent where multiple scientific communities claim a technique as their own.”).

185. See United States v. Porter, 618 A.2d 629, 634 (D.C. 1992) (“It simply is not creditable to argue
. . . that general acceptance may be premised simply on the opinion of forensic scientists
While views of forensic scientists have weight and must be considered, ‘members of the
relevant scientific field will include those whose scientific background and training are
sufficient to allow them to comprehend and understand the process and form a judgment
about it.’” (quoting Reed v. State, 391 A.2d 364, 368 (Md. 1978))).

204 72 UCLA L. REV. DISC. 174 (2024)

computers undeserved deference.186 It leads courts to underappreciate the
difficulty of generalizing software behavior from a few tests, the risk of subsets of
defendants triggering untested behavior, and the risk of errors going unnoticed.

To be clear, the issue is not that software evidence is uniquely complex or
difficult to generalize, but that the courts have not applied the same scrutiny to
software evidence that they have applied to other similarly complex scientific
evidence. For example, consider medical evidence. Medical principles can also be
hard to generalize. It is not uncommon for drugs to have adverse effects on a subset
of people,187 and determining causality can be extraordinarily complex. But the
medical community has developed sophisticated expertise that allows them to
agree on generally appropriate treatments, and this acceptance rightly carries
weight in court. The key difference is that when determining the admissibility of
medical evidence, the courts hear medical testimony regarding the complexity of
biological reactions and the likelihood of error. Courts evaluating a DNA
matching technology rarely hear from a software expert or recognize these
specialists’ distinct expertise.

Prior to computerized DNA matching, forensic experts could understand all
the steps in their process. The risks of human error and contamination were
within these experts’ purview, so they could fully speak to the reliability of their
results. But when software becomes highly integrated into the procedure, forensic
experts’ scope of authority narrows.188 Courts have not brought in additional
expertise to maintain a complete understanding of the evidence’s reliability.
Consequently, courts convict and exonerate defendants with only partially
verified evidence, as they leave entire categories of errors unchecked.

IV. POTENTIAL SOLUTIONS

The Daubert and Frye standards require courts to evaluate the risk of
implementation error.189 But courts are failing to apply these standards properly
because they are too reliant on theoretical principles and validation studies. To

186. See Rushby, supra note 65, at 2; People v. Bullard-Daniel, 42 N.Y.S.3d 714, 720 (Niagara Cnty.
Ct. 2016) (“[T]he Court agrees[] that the only question before it is whether the scientific
principles underlying the STRmix software are accepted generally in the relevant scientific
community.”).

187. See, e.g., MARK KESTER, KENT E. VRANA & KELLY D. KARPA, ELSEVIER’S INTEGRATED REVIEW
PHARMACOLOGY 64 (2d ed. 2012) (describing how “slow acetylators” are at greater risk of drug-
related toxicities from taking isoniazid).

188. See Imwinkelried, supra note 23, at 97 (“In the early 20th century, the normal pattern was that
an individual expert would personally conduct by hand a single test [Today] the witness
will testify about the results of an automated forensic technique that he or she oversaw.”).

189. Supra Parts II, III.

When Disciplines Disagree 205

protect the legitimacy of criminal trials, courts must require additional sources of
verification. This Part will analyze three additional measures that courts can take:
(1) mandating source code disclosure; (2) scrutinizing programming practices;
and (3) emphasizing software expertise.

Source code review has been the focus of most scholars and defendants thus
far. It is an effective complement to verification studies for many kinds of
programs, but not all of them. Due to this limitation, industry standards often
include certain error-resistant programming practices. These practices can be
particularly useful when software is too complex for effective code review, but it is
challenging to assess how much reliability they provide. As such, this Part ends
with an argument for a greater emphasis on software expertise. To navigate the
complex field of software assurance, courts should use software experts’
testimonies to flexibly determine the risk of software error and the need for
additional verification.

A. Disclosing Source Code

Access to source code alleviates many of the issues with relying on validation
studies. It allows defendants to understand the basic logic of the opposing
software, helping them identify whether there are relevant conditions that
validation studies did not test.190 The value of source code disclosure for
uncovering errors missed by validation studies is not speculative. As noted in Part
I, previous disclosure orders for source code have repeatedly uncovered serious
errors.191

This notion—that adversarial review is a powerful tool for discovering the
truth—is hardly foreign to American courts. The Supreme Court has noted that
“[t]he very premise of our adversary system of criminal justice is that partisan
advocacy on both sides of a case will best promote the ultimate objective that the
guilty be convicted and the innocent go free.”192 Likewise, faced with great
difficulties in assuring software performance, the computer science community
has long recognized the importance of adversarial and open-source review.193

190. See Kroll et al., supra note 74, at 648 n.41.
191. Supra notes 49–56 and accompanying text.
192. Herring v. New York, 422 U.S. 853, 862 (1975).
193. ERIC S. RAYMOND, THE CATHEDRAL & THE BAZAAR: MUSINGS ON LINUX AND OPEN SOURCE BY

AN ACCIDENTAL REVOLUTIONARY 19 (2008) (“Given enough eyeballs, all bugs are shallow.”); see
also Jim Hamerly, Tom Paquin & Susan Walton, Freeing the Source: The Story of Mozilla, in
OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 197, 197–206 (Chris DiBona,
Sam Ockman & Mark Stone eds., 1999) (describing Mozilla’s shift to open source); Steven

206 72 UCLA L. REV. DISC. 174 (2024)

Attempting to break software is the “most frequent[] and common[]” method to
secure it.194 Bug bounty programs—which reward the public for finding errors—
are well established, originating with sophisticated entities like the Pentagon and
Google.195 While the effectiveness of source code review can vary,196 it boasts
strong advocates in the computer science community.197

Some scholars have argued that the time constraints in criminal trials will
prevent defendants from performing meaningful source code analysis.198 The
errors found following previous disclosure rulings suggest otherwise.199 First,
source code review does not have to analyze a program in its entirety to be effective.
Line-by-line analysis is not necessary to understand the basic logic of a program,
which on its own can reveal if key conditions were not tested or if the program’s
overarching logic is flawed. Second, source code review does not have to be
comprehensive to help ensure compliance with development standards.200 Third,
even if only a minority of defendants have the resources to conduct a meaningful
analysis, the results of their review can help anyone accused by the same software.
When one defendant identified errors in FST, the existence of these errors became
widely known.201 The program was discontinued, and its source code was
unsealed—helping everyone wrongfully accused due to FST errors and everyone
who would have been if the program had continued.

Certainly, the degree to which source code is used to find simple errors,
design errors, and compliance failures will vary from case to case. For simpler

Vaughan-Nichols, Coverity Finds Open Source Software Quality Better Than Proprietary Code,
ZDNET (Apr. 16, 2014, 11:01 AM), https://www.zdnet.com/article/coverity-finds-open-
source-software-quality-better-than-proprietary-code [https://perma.cc/Y5CA-9DRY]
(“[T]he numbers don’t lie and the 2013 Coverity Scan Open Source Report . . . found that open
source had fewer errors per thousand lines of code (KLoC) than proprietary software.”);
Chessman, supra note 61, at 223–24 n.323 (reporting that “78 percent of companies in the
world rely on open-source software in their computer programs”).

194. Brad Arkin, Scott Stender & Gary McGraw, Software Penetration Testing, 3 IEEE SEC. & PRIV.
84, 84–87 (2005).

195. Akemi Takeoka Chatfield & Christopher G. Reddick, Crowdsourced Cybersecurity Innovation:
The Case of the Pentagon’s Vulnerability Reward Program, 23 INFO. POLITY 177, 177–78 (2018).

196. See, e.g., Jing Wang, Patrick C. Shih & John M. Carroll, Revisiting Linus’s Law: Benefits and
Challenges of Open Source Software Peer Review, 77 INT’L J. HUMAN-COMPUTER STUD. 52
(2015).

197. See, e.g., Ince, Hutton & Graham-Cumming, supra note 31 (“[A]nything less than release of
actual source code is an indefensible approach for any scientific results that depend on
computation”).

198. See Wexler, supra note 18, at 1373–74.
199. See supra notes 49–56 and accompanying text.
200. See Gates et al., supra note 48; Hotten, supra note 48; Glinton, supra note 48.
201. See supra notes 52–55 and accompanying text.

When Disciplines Disagree 207

programs, source code review alone may be sufficient to augment validation
studies. In other instances, verification may rely more heavily on proper
development practices,202 and source code review could mainly serve to ensure
compliance with these practices.

The role of source code can be different still for AI-based systems, where the
training data and parameters heavily influence the end product’s behavior. In
these cases, other forms of disclosure may be more relevant.203 Source code review
can still provide relevant information, such as how the training was performed.204
But the usefulness of this information again varies depending on the software.

Against source code disclosure, developers often claim trade secret
protection or point to the commercial costs of disclosure.205 While these
arguments may have relevance in other contexts,206 they are inapplicable where
disclosure is necessary to meet admissibility standards. That is, admissibility
standards do not force developers to relinquish their trade secrets. It is the
developers’ choice whether they want to open their products to level of review
needed to comply with admissibility standards. Likewise, expense is not a part of
the Daubert or Frye inquiry. If a developer’s business model cannot survive
complying with evidentiary rules, then they are simply not capable of making an
admissible product.

B. Examining Programming Practices

While source code review and validation testing are the focus of legal
scholarship, they are not the only tools for software verification. This Subpart
explains how developers can use techniques like defensive programming and
multiple-version software to write code that is less likely to fail when errors
occur.207 Developers can also reduce error formation in the first place using
practices like traceability analysis.208 As both categories result in more trustworthy

202. See infra Subpart IV.B.
203. Brandon L. Garrett & Cynthia Rudin, Interpretable Algorithmic Forensics, PROC. NAT’L ACAD.

SCIS., Oct. 10, 2023, at 1, 4 (describing the elements of interpretable forensic AI).
204. Such details include the parameters, hyperparameters, and the model itself. See Li Yang &

Abdallah Shami, On Hyperparameter Optimization of Machine Learning Algorithms: Theory
and Practice, 415 NEUROCOMPUTING 295, 296–99 (2020).

205. See, e.g., Commonwealth v. Foley, 38 A.3d 882, 888–89 (Pa. Super. Ct. 2012).
206. For a discussion of the trade secrets objection outside of admissibility hearings, see generally

Wexler, supra note 18.
207. See NY TrueAllele Review, supra note 136.
208. See COEST, supra note 157.

208 72 UCLA L. REV. DISC. 174 (2024)

code, courts—like the computer science community209 and multiple federal
agencies210—can look to the presence of such practices to determine whether
software is sufficiently reliable.

1. Error-Resistant Code

There is a wide variety of techniques aimed at making code more error
resistant. One illustrative example is multiple-version software, which operates on
a similar principle to overengineering. Akin to using multiple independently
sufficient beams to hold up the same bridge, a multiple-version program can use
multiple independent methods to answer the same question. By checking first that
those methods provide the same answer, the program can offer more certainty.

As noted above, the promotion of this method is controversial among
software reliability experts.211 The different versions must be meaningfully
different, which is difficult to verify. As such, the technique risks increasing a
developer’s confidence in the software without actually improving reliability.

Another technique, defensive programming, faces a similar problem.
Defensive programming adds code that checks for errors preemptively.212 Such
checks are standard and effective where errors are predictable,213 but again rely on
some prediction of what kinds of errors are likely to arise.

Ultimately, error-resistant code can be effective in some cases, but
understanding its effectiveness requires a complicated analysis of method
diversity and error risks.

2. Error-Resistant Coding

Software can also be more reliable when it is created using less error-prone
development processes.214 Such processes are typically implemented through

209. Patrick Rempel & Parick Mäder, Preventing Defects: The Impact of Requirements Traceability
Completeness on Software Quality, 43 IEEE TRANSACTIONS ON SOFTWARE ENG’G 777 (2017)
(“Requirements traceability is broadly recognized as a critical element of any rigorous software
development process”).

210. See COEST, supra note 157.
211. See supra notes 79–81 and accompanying text.
212. Jean-Louis Boulanger, Technique to Manage Software Safety, in CERTIFIABLE SOFTWARE

APPLICATIONS 135–36 (2016); see, e.g., Marco Guarnieri, Boris Köpf, Jan Reineke & Pepe Vila,
Hardware-Software Contracts for Secure Speculation, IEEE SYMP. ON SEC. & PRIV. (2021).

213. See, e.g., Oftedal, supra note 97 (discussing the specific errors to check for when “validating
input”).

214. See U.S. FOOD & DRUG ADMIN., GENERAL PRINCIPLES OF SOFTWARE VALIDATION; FINAL
GUIDANCE FOR INDUSTRY AND FDA STAFF 20 (2002) (“Firms frequently adopt specific coding

When Disciplines Disagree 209

guidelines that require developers to document specific information on how their
code works, create detailed explanations of the expected behavior, and evaluate
whether each segment of code operates as expected.215 These checks have
important internal functions and can dramatically reduce the rate of errors.216
They improve communication and make programs more comprehensible by
humans, which reduces the various kinds of misunderstandings discussed
above.217

One practice for improving program comprehension is maintaining
traceability.218 It is a well-recognized method, mandated by federal regulators
such as the Food and Drug Administration (FDA) and Federal Aviation
Administration (FAA).219 At the highest level, traceability is a formal method of
tracking software requirements and the corresponding code. It requires that any
high-level requirements can be traced to specific low-level requirements, and vice
versa. In the development of software for an autopilot system, a high-level
requirement might be that the system can maintain a specified altitude during
flight. Low level requirements could be (1) accurately acquiring the current
altitude from the aircraft’s altimeter, (2) defining a permissible deviation from the
desired altitude, and (3) communicating with the aircraft’s control surfaces for
altitude corrections. Tracking and tracing these requirements allows developers

guidelines that establish quality policies and procedures related to the software coding
process.”); see also NANCY G. LEVESON, SAFEWARE: SYSTEM SAFETY AND COMPUTERS (1993)
(“One obvious lesson is that most accidents are not the result of unknown scientific principles
but rather of a failure to apply well-known, standard engineering practices. A second lesson is
that accidents will not be prevented by technological fixes alone, but will require control of all
aspects of the development and operation of the system.”).

215. See U.S. FOOD & DRUG ADMIN., supra note 214 (“Code comments should provide useful and
descriptive information for a module, including expected inputs and outputs, variables
referenced, expected data types, and operations to be performed. Source code should also be
evaluated to verify its compliance with the corresponding detailed design specification.
Modules ready for integration and test should have documentation of compliance with coding
guidelines and any other applicable quality policies and procedures.”).

216. Such explanations, such as “code comments,” are important for effective internal
development. See Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich &
Frank Ortmeier, Commenting Source Code: Is It Worth It for Small Programming Tasks?, 24
EMPIRICAL SOFTWARE ENG’G 1418 (2019).

217. See supra notes 62–73 and accompanying text.
218. See generally B. Scott Andersen & George Romanski, Verification of Safety-Critical Software,

54 Commc’ns ACM 52 (2011) (explaining key concepts in traceability).
219. FED. AVIATION ADMIN., ORDER 8110.49A, SOFTWARE APPROVAL GUIDELINES 1–3 (2018)

(“Inspecting the traceability from system requirements to software requirements to software
design to source code to object code to test cases and procedures to test results.”); U.S. FOOD &
DRUG ADMIN, supra note 214, at 21 (“A source code traceability analysis is an important tool
to verify that all code is linked to established specifications and established test procedures.”).

210 72 UCLA L. REV. DISC. 174 (2024)

to identify and address high-risk sources of error. If, for example, a lower-level
item cannot be directly traced to a higher-level item, then the lower-level item may
have unintended behaviors and merit further review.220 If part of the altitude
maintenance code communicates with the landing gear, the developers should
figure out why. This process can also help development teams retain a better
understanding of their product’s overall logic, making vulnerabilities more
obvious.

C. Emphasizing Software Expertise

Source code review, error-resistant coding techniques, and error-resistant
development practices all have merit in different circumstances. Source code
review can be useful for identifying simple errors, design errors, or compliance
failures—depending on factors such as the software’s complexity, structure, and
use of AI. The effectiveness of multiple-version software depends on a
complicated diversity analysis, and the effectiveness of traceability depends on the
precision with which it is implemented.

To understand when these practices are necessary and whether they have
been sufficiently implemented, courts must emphasize software expertise in their
assessments of forensic software. Heavier reliance on computer science experts—
through both their testimony in court and guidance creating standards—would
address concerns that peer review without source code is illegitimate221 and allow
for software testing that is more aligned with the recommended practices in
computer science.222

Additionally, by using software experts’ testimonies, courts can flexibly
require source code disclosure and error-resistant programming practices when
those methods are appropriate and only when they are appropriate. Contrast
this with the recently-proposed legislative requirement for developers to
always disclose the source code for their products.223

220. See Andersen & Romanski, supra note 218.
221. See CARRIER, supra note 31; see, e.g., Ince et al., supra note 31; Morin et al., supra note 31.
222. See, e.g., Kroll et al., supra note 74, at 661 n.91 (discussing a technique called “white-box

testing”); see Sean Gallagher, Microsoft Launches “Fuzzing-as-a-Service” To Help Developers
Find Security Bugs, ARS TECHNICA (Sept. 27, 2016, 8:21 AM),
https://arstechnica.com/information-technology/2016/09/microsoft-launches-fuzzing-as-a-
service-to-help-developers-find-security-bugs [https://perma.cc/24W7-JRF4].

223. Justice in Forensic Algorithms Act of 2021, H.R. 2438, 117th Cong. (2021) (“[T]he defendant
shall be accorded access to both an executable copy of and the source code for the version of
the computational forensic software”). Note that the bill would also charge the National

When Disciplines Disagree 211

To be clear, given the computer science literature on source code disclosure,224
this proposal is likely to bring courts closer to the assurance standards
accepted in the computer science scientific community. But it would be closer
still—and better aligned with current law—to determine the need for source
code disclosure on an individualized basis using computer science testimony and
standards.

This is not a stretched reading of Daubert and Frye. Indeed, a handful
of courts have already recognized that current admissibility standards require
judges to treat computer science as an independent, necessary scientific
discipline. In Pickett, the court held in its review of TrueAllele that techniques
which integrate multiple scientific disciplines must be verified across each
discipline.225

And, as explored above, this reading is correct. Software evaluation is
sufficiently complicated to fall outside of the expertise of forensic
scientists. Without accounting for the prevalence and elusiveness of software
errors, courts are liable to underestimate error rates and permit insufficient
standards. But by distinguishing between scientific disciplines, courts can
ensure that they are not overextending the testimony of forensic specialists
and that admitted scientific evidence has general acceptance in each relevant
scientific community.

CONCLUSION

This Essay has argued that courts should use computer science expertise to
help determine whether software-generated evidence meets the standards
for scientific admissibility. Software errors can occur through many
different mechanisms—regardless of whether the underlying scientific
principles are correct. These errors can be hard to catch or mitigate, so the
computer science community has developed sophisticated methods for finding
errors and reducing the danger from unfound errors. To correctly apply their
admissibility standards for scientific evidence, courts must require the moving
party to present testimony or standards from experts who have knowledge
of these issues in software verification. This additional testimony will allow

Institute of Standards and Technology (NIST) with creating standards for evaluating forensic
software. Id. § 2(a). Transitioning this standards-setting role to a technology-oriented agency
is in line with the judicial recommendations in this Part.

224. See supra Subpart IV.A.
225. State v. Pickett, 246 A.3d 279, 311 (N.J. Super Ct. App. Div. 2021) (“TrueAllele’s software

integrates multiple scientific disciplines, therefore requiring cross-disciplinary validation to
determine reliability.”).

212 72 UCLA L. REV. DISC. 174 (2024)

for a more meaningful determination of where source code review and other
assurance measures are necessary to properly gatekeep scientific evidence in the
courtroom.

More broadly, an appreciation of the distinct expertise within
software assurance can prevent courts from continuing to over-rely on novel
technologies. While DNA matching systems are currently the subject of
scrutiny, they were preceded by fingerprint analyzers, which were preceded by
breathalyzers. Each time, courts held that source code disclosure was
unnecessary to sufficiently vet the software, and each time, serious errors were
found when the code was eventually released. Recognizing the limits of
forensic experts—and, potentially more important, recognizing the expertise
of computer science experts—can provide the missing perspective that is
needed for courts to properly balance the opportunities and limitations of
emerging forensic technologies.

	Schwartz Final Title Pages 2
	Schwartz Final Article Pages 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides true
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [396.000 612.000]
>> setpagedevice

